

User's Guide

NHD-24064CZ-FSW-GBW **LCM**

(Liquid Crystal Display Graphic Module) **RoHS Compliant**

Newhaven Display NHD-24064-240 x 64 pixels

CZ-Model = C / Factory = Z

F -Transflective

SW-Side White LED B/L

G-STN - Gray 6:00 View B-

W-Wide Temperature $(-20 \sim +70c)$

For product support, contact

Newhaven Display International, LLC 2511 Technology Drive, #101 **Elgin, IL 60124**

Tel: (847) 844-8795 Fax: (847) 844-8796

NHD-24064CZ-FSW-GBW

SPECIFICATION OF LCD MODULE

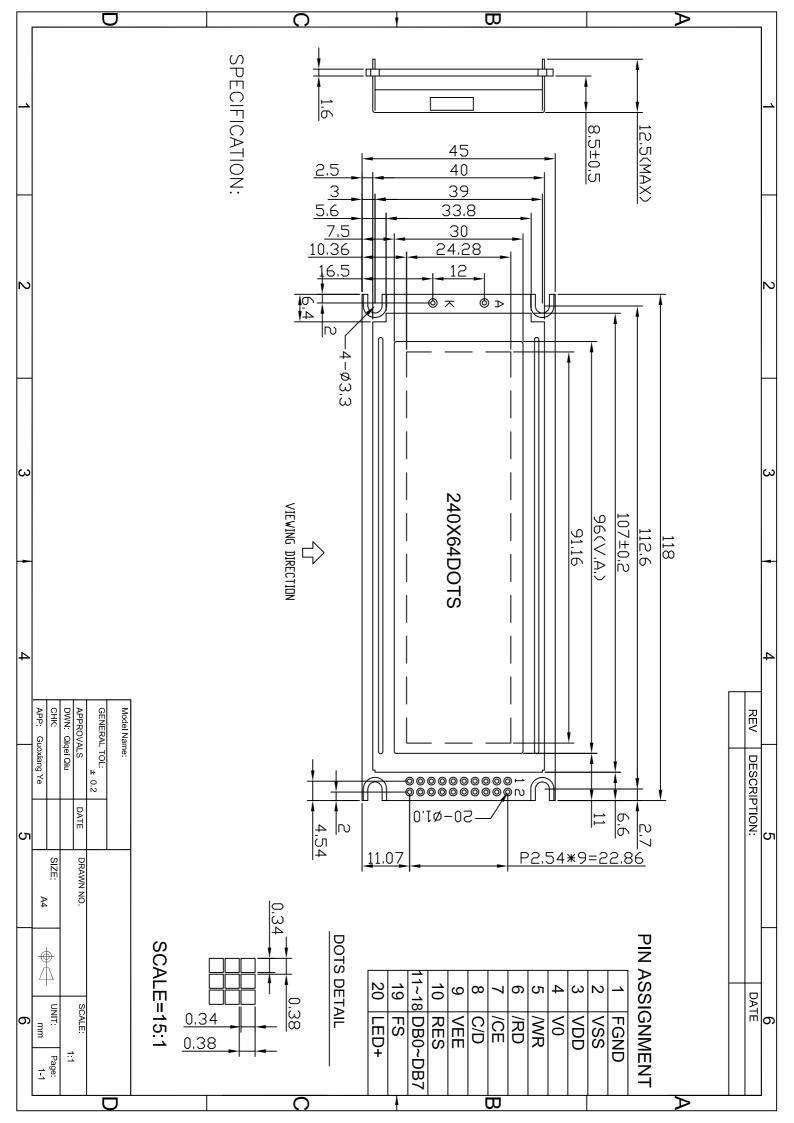
1.Features

Easy interface with 8-bit MPU

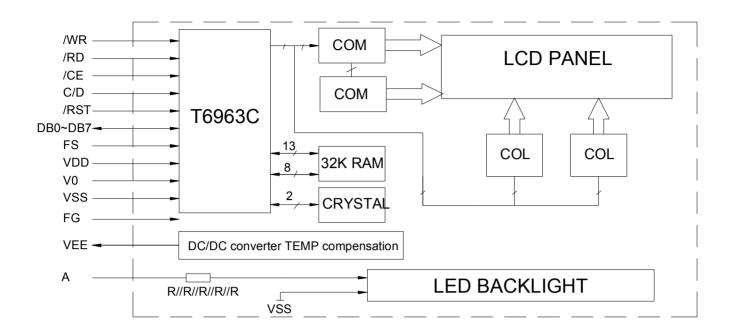
Low power consumption

Driving method: 1/64 duty, 1/9 bias

LCD driver IC: T6963C


2.Part Numbering Guide

3. Absolute maximum ratings


İtem	Symbol		Standard	Unit	
Power voltage	V _{DD} -V _{SS}	0	-	7.0	V
Input voltage	VIN	VSS	-	VDD	•
Operating temperature range	VOP	-20	-	+70	$^{\circ}$
Storage temperature range	VST	-30	-	+80	<u> </u>

*Wide temperature range is available

(operating/storage temperature as –20~+70/-30~+80°C)

4.Block diagram

5.Interface pin description

Pin No.	Symbol	External connection	Function				
1	FGND		Frame ground				
2	Vss		Signal ground for LCM (GND)				
3	V_{DD}	Power supply	Power supply for logic (+5V) for LCM				
4	V ₀		Operating voltage for LCD				
5	WR	MPU	Write enable signal				
6	/RD	MPU	Read enable signal				
7	/CE	MPU	Chip enable signal				
8	C/D	MPU	H: Instruction L: Data				
9	VEE	OUT	VEE is connected by the same voltage.				
10	/RST	MPU	Reset signal				
11~18	DB0~DB7	MPU	Data bus line				
19	FS	MPU	Font selection				
20	LED+	BKL power supply	Power supply for BKL				

6.Optical characteristics

Ø STN type display module (Ta=25℃, VDD=5.0V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Viewing angle	θ	Cr≥2	-60	-	35	Dog	
	Ф	Ur∕Z	-40	-	40	Deg	
Contrast ratio	Cr		-	6	-	-	
Response time (rise)	Tr	-	-	150	250	mo	
Response time (fall)	Tr	-	-	150	250	ms	

7. Electrical characteristics

Ø DC characteristics


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage for LCD	V_{DD} - V_0	Ta =25℃		12.6	_	V
Input voltage	V_{DD}		4.7	5.0	5.5	
Supply current	IDD	Ta=25℃, V _{DD} =5.0V	_	7.01	_	mA
Input leakage current	I _{LKG}		_	_	1.0	uA
"H" level input voltage	VIH		2.2	_	V _{DD}	
"L" level input voltage	VIL	Twice initial value or less	0	_	0.6	
"H" level output voltage	Vон	LOH=-0.25mA	2.4	_	_	V
"L" level output voltage	Vol	LOH=1.6mA	_	—-	0.4	
Backlight supply voltage	VF		_	4.2	4.6	
Supply current	I _F	V_{led} =5v, R=6.8 Ω		350		mA

Ø Switching characteristics

(Ta=25℃, VDD=5.0V)

Item	Symbol	Test conditions	Min.	Тур.	Max.	Unit
C/D set-up time	T _{cds}		100			
C/D hold time	Tw		10			
/CE, /RD, /WR pulse width	Tce, Trd, Twr		80	_	_	
Data set-up time	Tds	_	80			ns
Data hold time	T_{dh}		40	_	_	
Access time	Tacc		_		150	
Output hold time	Toh		10	_	50	

Bus timing diagram

8. Flowchart of communications with MPU

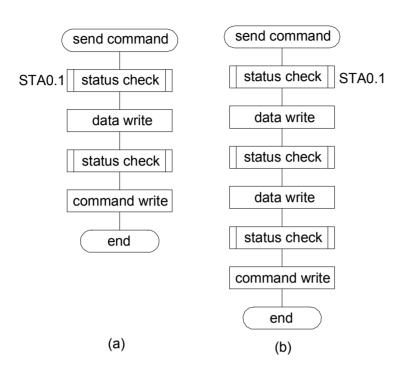
Status read

A status check must be performed before data is read or written. The status word format is as follows:

/RI	/WR	/CE	C/D	STA7	STA5	STA5	STA4	STA3	STA2	STA1	STA0
0	1	0	1	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

STA0	Check command execution capability	0: disable	1:enable
STA1	Check data read / write capability	0: disable	1:enable
STA2	Check auto mode data read capability	0: disable	1:enable
STA3	Check auto mode data write capability	0: disable	1:enable
STA4	Not used		
STA5	Check controller operation capability	0: disable	1:enable
STA6	Error flag. Used for screen peek and screen	0: no error	1: error
	copy commands.		
STA7	Check the blink condition	0: display off	1: normal display

Notes:


- 1. It is necessary to check STA0 and STA1 at the same time. There is a possibility of erroneous operation due to a hardware interrupt.
- 2. For most modes STA0 / STA1 are used as a status check.
- 3. STA2 and STA3 are valid in auto mode; STA0 and STA1 are invalid.
- 4. When using the STA7=0 command, a status read must be performed. If a status check is not carried out, the T6963C cannot operate normally, even after a delay time. The hardware interrupt occurs during the address calculation period (at the end of each line). If a STA7=0 command is sent to the T6963c during this period, the T6963C enters wait status. If a status check is not carried out in this state before the next command is sent, there is the possibility that the command or data will not be received.

Setting data

When using the T6963C, first set the data, and then set the command. Procedure for sending a command:

a). The case of 1 data

b) the case of 2 data

Note:

When sending more than two data, the last datum (or last two data) is valid.

9.Command definitions

Command	Code	D1	D2	Function
	00100001	X address	Y address	Set cursor pointer
Registers setting	00100010	Data	00H	Set offset register
	00100100	Low address	High address	Set address pointer
	01000000	Low address	High address	Set text home address
Cot control word	01000001	columns	00H	Set text area
Set control word	01000010	Low address	High address	Set graphic home address
	01000011	columns	00H	Set graphic area
	1000X000			OR mode
	1000X001			EXOR mode
Mada aat	1000X011			AND mode
Mode set	1000X100			Text attribute mode
	10000XXX			Internal CG ROM mode
	10001XXX			External CG RAM mode
	10010000			Display off
	1001XX10			Cursor on, blink off
Dianlaymada	1001XX11			Cursor on, blink on
Display mode	100101XX			Text on, graphic off
	100110XX			Text off, graphic on
	100111XX			Text on, graphic on
	10100000			1- Line cursor
	10100001			2- Line cursor
	10100010			3- Line cursor
Cursor pattern	10100011			4- Line cursor
select	10100100			5- Line cursor
	10100101			6- Line cursor
	10100110			7- Line cursor
	10100111			8- Line cursor
Data auto read /	10110000			Set data auto write
	10110001			Set data auto read
write	10110010			Auto reset
	11000000	Data		Data write and increment ADP
	11000001			Data read and increment ADP
Data read / write	11000010	Data		Data write and decrement ADP
Data read / Write	11000011			Data read and decrement ADP
	11000100	Data		Data write and no variable ADP
	11000101			Data read and no variable ADP
Screen peek	11100000			Screen peek
Screen copy	11101000			Screen copy
	11110XXX			Bit reset
	11111XXX			Bit set
	1111X000			Bit 0 (LSB)
	1111X001			Bit 1
Dit not / roact	1111X010			Bit 2
Bit set / reset	1111X011			Bit 3
	1111X100			Bit 4
	1111X101			Bit 5
	1111X110			Bit 6
	1111X111			Bit 7(MSB)

Note:

When an MPU program with checking the busy flag (DB7) is made, it must be necessary 1/2fosc is necessary for executing the next instruction by the falling edge of the "E" signal after the busy flag (DB7) goes to "Low".

X: invalid

Contents

1). Setting registers

D1	D2	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
X	Х	0	0	1	0	0	N2	N1	N0

CODE	HEX.	FUNCTION	D1	D2
00100001	21H	Set cursor pointer	X ADRS	YADRS
00100010	22H	Set offset register	DATA	00H
00100100	24H	Set address pointer	Low ADRS	High ADRS

Ø Set cursor pointer

X ADRS and Y ADRS specify the position or the cursor. The cursor position can only be moved by this command. Data read / write from the MPU never changes the cursor pointer. X ADRS and Y ADRS are specified as follows.

X ADRS 00H to 4FH (lower 7 bits are valid)

YADRS 00H to 1FH (lower 5 bits are valid)

a) Single-scan

X ADRS 00H to 4FH

YADRS 00H to 0FH b) Dual-scan

XADRS 00H to 4FH

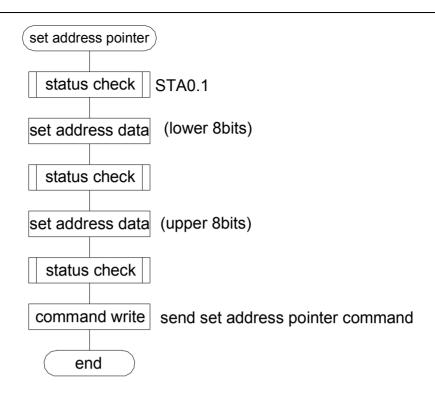
YADRS 00H to 0FH(upper screen) 10H to 1FH(lower screen) YADRS

Ø Set offset register

The offset register is used to determine the external character generator RAM area. The T6963C has a 16-bit address bus as follows:

MSB							LSB		
AD15 AD14 AD13 AD12 AD	11 AD10 AD9 A	AD8 AD7 AD6	AD5 AD4	AD3	AD2	AD1	AD0		
Offset register data		Character code					Line scan		

T6963C assign external character generator, when character code set 80H to FFH in using internal character generator. Character code 00H to 80H assign External character generator, when External generator mode.


The senior five bits define the start address in external memory of the CGRAM area. The next eight bits represent the character code of the character. In internal CGRAM mode, character codes 00H to 7FH represent the predefined "internal" CGRAM characters, and codes 80H to FFH represent the user's own "external" characters. In external CGRAM mode, all 256 codes from indicate one of the eight rows of eight dots that define the character's shape.

The relationship between display RAM address and offset register

Ø Set address pointer

The set address pointer command is used to indicate the start address for writing to (or reading from) external RAM.

The flowchart for set address pointer command:

2). Set control word

D1	D2	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
Χ	X	0	1	0	0	0	0	N1	N0

CODE	HEX.	FUNCTION	D1	D2
01000000	40H	Set text home address	Low address	High address
01000001	41H	Set text area	Columns	00H
01000010	42H	Set graphic home address	Low address	High address
01000000	43H	Set graphic area	Columns	00H

The home address and column size are defined by this command.

Ø Set text home address

The starting address in the external display RAM for text display is defined by this command.

The text home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

TH	TH +CL
TH+TA	TH+TA+CL
(TH+TA)+TA	TH+2TA+CL
(TH+2TA)+TA	TH+3TA+CL
1	1
TH+(N-1) TA	TH+(N-1) TA+CL

TH: text home address

TA: text area number (columns)

CL: columns ate fixed by hardware (pin-programmable)

Ø Set graphic home address

The starting address of the external display RAM used for graphic display is defined by this command. The graphic home address indicates the leftmost and uppermost position.

The relationship between external display RAM address and display position

GH	GH +CL
GH+GA	GH + GA +CL
(GH+ GA)+ GA	GH +2 GA +CL
(GH +2 GA)+ GA	GH +3 GA +CL
1	1
GH +(N-1) GA	GH +(N-1) GA +CL

GH: Graphic home address

GA: Graphic area number (columns)

CL: columns ate fixed by hardware (pin-programmable)

Ø Set text area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the display.

Ø Set graphic area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the graphic display.

If the graphic area setting is set to match the desired number of columns on the LCD, the addressing scheme will be automatically modified so that the start address of each line equals the end address of the previous line +1.

3). Mode set

CODE	FUNCTION	OPERAND
1000X000	OR Mode	_
1000X001	EXOR Mode	
1000X011	AND Mode	_
1000X100	TEXT Attribute Mode	_
10000XXX	Internal character Mode	_
10001XXX	External character Mode	_

The display mode is defined by this command. The display mode does not change until the next command is sent. The logical OR, EXOR, AND of text or graphic display can be displayed. In internal character generator mode, character codes 00H to 7FH are assigned to the built-in character generator ROM. The character codes 80H to FFH are automatically assigned to the external character generator RAM.

NOTE: attribute functions can only be applied to text display, since the attribute data is placed in the graphic RAM area.

Attribute function

The attribute operations are reverse display, character blink and inhibit. The attribute data is written into the graphic area, which was defined by the set control word command. Only text display is possible in attribute function mode; graphic display is automatically disabled. However, the display mode command must be used to turn both text and graphic on in order for the attribute function to be available.

The attribute data for each character in the text area is written to the same address in the graphic area. The attribute function is defined as follows.

Attribute RAM 1byte

				Χ	Χ	Χ	Χ	DB3	DB2	DB1	DB0
DB3	DB2	DB1	DB0	FUNC	TION						

NHD-24064CZ

0	0	0	0	Normal display
0	1	0	1	Reverse display
0	0	1	1	Inhibit display
1	0	0	0	Blink of normal display
1	1	0	1	Blink of reverse display
1	0	1	1	Blink of inhibit display

4). Display mode

CODE	FUNCTION	OPERAND
10010000	Display off	
1001xx10	Cursor on, blink off	
1001xx11	Cursor on, blink on	
100101xx	Text on, graphic off	
100110xx	Text off, graphic on	
100111xx	Text on, graphic on	

1	0	0	1	DB3	DB2	DB1	DB0
DDA				4	" 0		
DB0: cursor blink			on:	-	off: 0		
DB1: cursor display			on:	1	off: 0		
DB2: text display			on:	1	off: 0		
DB3:	DB3: graphic display			1	off: 0		

NOTE:

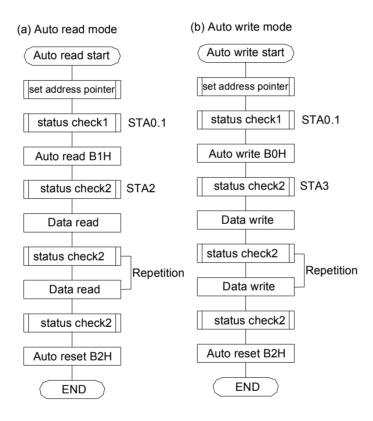
It is necessary to turn on "text display" and "graphic display" in the following cases.

- a) Combination of text / graphic display
- b) Attribute function

5). Cursor pattern select

CODE	FUNCTION	OPERAND
10100000	1-line cursor	
10100001	2-line cursor	
10100010	3-line cursor	
10100011	4-line cursor	
10100100	5-line cursor	
10100101	6-line cursor	
10100110	7-line cursor	
10100111	8-line cursor	

When cursor display is on, this command selects the cursor pattern in the range 1 line to 8 lines. The cursor pointer set command defines the cursor address.

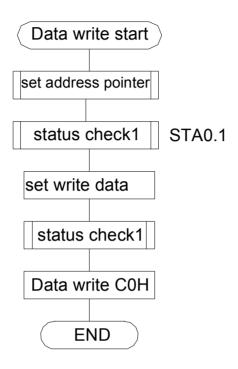

6). Data auto read / write

CODE	HEX.	FUNCTION	OPERAND
10110000	B0H	Set data auto write	
10110001	B1H	Set data auto read	
10110010	B2H	Auto rest	

The command is convenient for sending a full screen of data from the external display RAM. After setting auto mode, a data write (or read) command is need not be sent between each datum. A data auto write (or read) command must be send after a set address pointer command. After this command, the address pointer is automatically incremented by 1 after each datum. In auto mode, the T6963C cannot accept any other commands.

The auto reset command must be sent to the T6963C after all data has been sent, to clear auto mode.

NOTE: A status check for auto mode (STA2, STA3 should be checked between sending of each datum. Auto reset should be performed after checking STA3=1(STA2=1)). Refer to the following flowchart.

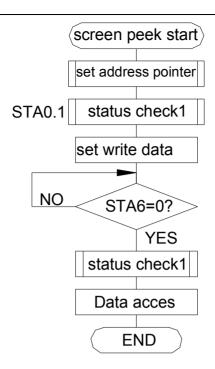

7). Data read / write

CODE	HEX.	FUNCTION	OPERAN
			D
11000000	C0H	Data write and increment ADP	Data
11000001	C1H	Data read and increment ADP	
11000010	C2H	Data write and decrement ADP	Data
11000011	СЗН	Data read and decrement ADP	
11000100	C4H	Data write and no variable ADP	Data
11000101	C5H	Data read and no variable ADP	

NHD-24064CZ

This command is used for writing data from the MPU to external display RAM, and reading data from external display RAM to the MPU. Data write /data read should be executed after setting address using ser address pointer command. The address pointer can be automatically incremented or decremented using this command.

Note: this command is necessary for each 1-byte datum. Refer to the following flowchart.


8). Screen peek

CODE	HEX.	FUNCTION	OPERAND
11100000	E0H	Screen peek	_

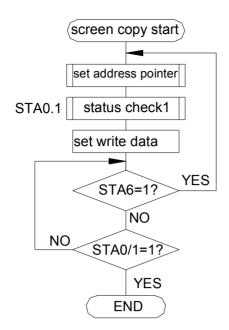
This command is used to transfer 1 byte of displayed data to the data stack; this byte can then be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by read by this command.

The status (STA6) should be checked just after the screen peek command. If the address determined by the set address pointer command is not in the graphic area, this command is ignored and a status flag (STA6) is set.

Refer to the following flowchart.

Note: this command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to ser text area and set graphic area command.

9). Screen copy

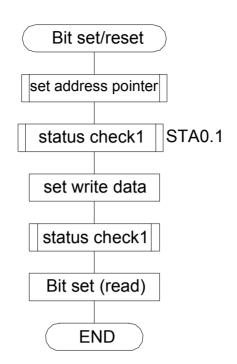

CODE	HEX.	FUNCTION	OPERAND
11101000	E8H	Screen copy	

This command copies a raster line of data to the graphic area.

The start point must be set using the set address pointer command. Note:

If the attribute function is being used, this command is not available. (With attribute data is graphic area data.)

With dual-scan, this command cannot be used (because the T6963C cannot separate the upper screen data and lower screen data). Refer to the following flowchart.



This command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to set text area and set graphic area command.

10). Bit set /reset

CODE	FUNCTION	OPERAND
11110XXX	Bit reset	
11111XXX	Bit set	
1111X000	Bit 0 (LSB0)	
1111X001	Bit 1	
1111X010	Bit 2	
1111X011	Bit 3	
1111X100	Bit 4	
1111X101	Bit 5	
1111X110	Bit 6	
1111X111	Bit 7 (LSB0)	

This command use to set or reset a bit of the byte specified by the address pointer. Only one bit can be set / reset at a time. Refer to the following flowchart.

CHARACTER CODE MAP

